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Thermodynamic models and experimental data exhibit systematic and random errors. The severity of
their errors depends on their use, such as for process calculations in a process simulator. Similarly, the
value of better thermodynamic models and/or data should be measured with reference to such use.
Strategies for quantification of such thermodynamics-induced process uncertainties via Monte Carlo
simulation, regression analysis, and analogies to optimization are described, with simple examples. Such
approaches can be used for safety-factor/risk analysis, guidelines for process simulator use, experimental
design, and model comparisons.

Introduction

When one designs a process, it is convenient and
sometimes necessary to assume that inputs to the simula-
tion, be they design parameters or physical properties, are
known accurately and precisely. However, such assump-
tions can be misleading, especially when they are made
implicitly and when the risk of their use is not considered.
It is common in chemical process design to consult

experts who choose the best physical property models and
computer programs for the design engineer. Although
these choices may be the best ones and the programs may
be state-of-the-art, the uncertainty in the physical proper-
ties calculated is often not communicated to the design
engineer. The accuracy, precision, and range of applicabil-
ity of models are often overestimated by the users of the
models. In fact, Mathias and Klotz (1994), in the first of
their “Laws of Industrial Thermodynamics”, point out that
“process engineers will use models outside recommended
ranges”. Even terminology reinforces these misconcep-
tions. To the physical properties expert, a “rigorous” model
is one with a certain level of thermodynamic and other
consistency and one that can be used over a range of
conditions. It is not meant to imply a high degree of
accuracy. To many process engineers, however, “rigorous”
means “correct”.
This lack of communication of uncertainty information

occurs not only between model developers and process
engineers but also between experimentalists and model
developers. Full uncertainty analyses are rare in experi-
mental papers, as are comparisons of model error and
experimental error in articles on model development.
The problem then is to consider the entire system of data

generation, model development/choice, and process simula-
tion (Figure 1). One goal is to develop optimal process
designs, and this requires accurate process simulation,
accurate thermodynamic models, and accurate experimen-
tal data. The random and systematic error inherent in
experimental data affect the final design. So, too, the
errors in any thermodynamic model degrade that design.
What we need is a strategy for communicating the uncer-

tainties so that their effects on the final design are
understood and used in assessing the quality of the design.

Identification of the Problem

The problem of uncertainty in process design is il-
lustrated with the traditional relationship between the
minimum number of stages required in a distillation
column and the relative volatility of the key components,
shown in schematic form in Figure 2. If there is uncer-
tainty concerning the value of the relative volatility, there
is certainly uncertainty concerning the number of stages
for the column. Even this simple sketch shows the value
of considering effects of uncertainties in thermodynamic
data on design. Of course, there are many other inputs to
the determination of the actual number of stages required.
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Figure 1. Connections between data generation, model develop-
ment/choice, and process simulation.

Figure 2. Sensitivity of minimum stages required in a column.
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Tray efficiencies are calculated from inexact hydrodynamic
models that use experimentally determined physical prop-
erties. At some point in the design process, a guesstimate
of the uncertainties ismade, in the form of a “safety factor”.
It is the rational quantification of these safety factors or
their replacement that is needed.

Model Choice Uncertainty

Much work on identifying the problem of physical
property errors and process uncertainties was done by
Zudkevitch and others in the 1970s (Murthy and Zud-
kevitch, 1979; Zudkevitch 1980). Figure 3 shows one of
their case studies. Two different liquid-state activity-
coefficient models were used to calculate the recovery of
cyclohexanol from phenol in a given distillation column.
For a given reflux ratio, the recovery differs substantially
for the two sets of calculations. The predicted maximum
recovery for one model was approximately 81%, while that
for the other was 87%. Neither model is correct in any
strict sense, so the uncertainty is high and unacceptable.
Of greater concern is that the level of uncertainty would
have gone unnoticed if the case study had not been done.
Both models give reasonable regression fits to the vapor-
liquid equilibrium data. Similar case studies have been
done by Nelson et al. (1983) and others.
Even seemingly simple systems can show significant

uncertainties. Figure 4 is reproduced from an article by
Hsu (1987) in which the propylene/propane separation was
studied. Relative volatilities calculated from Raoult’s law
and from the Soave-Redlich-Kwong (SRK) equation are
compared to experimental data, and the deviation is

dramatic. Hsu describes the effects on the design of a
column to perform this separation. Again, if one used only
a single equation of state for the system, one would get no
estimate of the uncertainty of the resulting design.
Many other examples can be given, and many process

engineers have related their stories to the author. In the
typical situation, they inadvertently change their thermo-
dynamic package option and are surprised (sometimes
disturbed) by the significant effect on calculated results.
Although they do get help in choosing the model from the
physical property experts (including warnings not to go
outside a specified temperature, pressure, or composition
range), the important question is not simply “Which model
is best?” but rather “How good is the best model?”.

Model Parameter Uncertainty

Hernandez et al. (1984) looked at the uncertainty of the
calculated relative volatility in an ethylene/ethane super-
fractionator. Figure 5 shows their results of a case study
in which two different equations of state were used in the
calculation, and then the experimental values were com-
pared. Again, there is the expected deviation among these
three sets of values. However, the fourth curve in Figure
5 shows that the choice of binary interaction parameters
for the SRK equation is more significant than is the choice
of SRK over the BWR equation. This leads to the concept
of evaluating design uncertainties by studying the effect
of varying model parameters as well as varying models.
Macchietto et al. (1986) used this same case to study the

sensitivity of the ethylene purity in the distillate to changes
in the various binary-interaction parameters. Figure 6
shows their results for the ethane/ethylene binary-interac-
tion parameter. Although the “linear approximation” line
can be determined quite simply from a linear sensitivity
approach from a base set of parameters, the authors show
that the actual sensitivity was nonlinear and much more
significant. They established the importance of considering
simulations across the expected range of model parameters.
However, the appropriate range to use in the uncertainty
analysis must somehow be determined.
The minimum information necessary for a linear sensi-

tivity analysis is the set of derivatives of key output
variables (e.g., reflux ratio) with respect to key input
variables (e.g., binary-interaction parameters). In the
absence of analytical derivatives, this multidimensional

Figure 3. Effect of selection of VLE correlation and heat of mixing
on recovery by distillation of cyclohexanol from phenol: 40 actual
trays, feed at 12. Redrawn with permission from Murthy and
Zudkevitch (Effect of Heat of Mixing and Vapor-Liquid Equilib-
rium on Design, Performance and Economics of Distillation. Inst.
Chem. Eng. Symp. Ser. 1979, No. 56, 1.1/51-1.1/78). Copyright
1979 Institution of Chemical Engineers.

Figure 4. Apparent relative volatility of propylene to propane
deviates from ideal mixing. Reprinted with permission from Hsu
(Beware! propylene-propane split. Hydrocarbon Process. 1987, 66
(4), 43-44). Copyright 1987 Gulf Publishing Co.
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linear approximation would require one additional simula-
tion of the process, very near the final design, for each input
variable. However, one expects (and Macchietto shows)
that the sensitivities are nonlinear. In addition, the real
question is not how sensitive the design is to small changes
in the input data but rather how sensitive the design is to
the actual uncertainty of the input data. A derivative of
the output variable with respect to the input variable is
not that helpful unless (1) it is normalized in some
meaningful way, and (2) it is a reasonable estimate over
the entire expected range of the variable.

Experimental Data Uncertainty

All model parameters, pure-component and binary,
ultimately are determined from some form of experimental
data. Zeck (1991) showed that these data may be sparse
or contradictory, even for common binary systems. As an
example, Zeck showed (Figure 7) the range of data (and
correlations) available for the system chlorobenzene +
ethylbenzene and noted that the differences in data from
different sources are “an unacceptable order of magnitude
for a test system for the calibration of distillation columns.”

Figure 8 shows an example of the uncertainty in model
parameters that can arise from random and systematic
errors in experimental data. Two sets of data for the
system ethanol-heptane are considered. Both sets seem
reasonable, and each individually exhibits the character-
istic confidence regions for the Wilson binary interaction
parameters. Both the 90% and the 99% confidence regions
are shown, based on a traditional maximum-likelihood
regression. To study the uncertainty of a design to
uncertainties in these model parameters, one might use
the indicated range of values. However, the two 99%
confidence regions (one for each set of data) do not overlap.
Thus, if the proper regression procedure were used, one
might infer with a high degree of confidence that the
Wilson equation does not fit this system, a conclusion not
reached from evaluation of one data set by itself. Alter-
natively, one might pool the data or use a much larger
parameter space that would include both sets of individual
confidence regions. If sufficient uncertainty information
on the measured variables is available, one could decide
to use only the more precise data set. However, the lack
of overlap shown in Figure 8 suggests either a systematic
error in one (or both) of the data sets or a systematic error
in the Wilson model.

Figure 5. Relative volatility profiles for the ethylene/ethane
system. Reprinted with permission from Hernandez et al. (The
Prediction of Properties and Its Influence on the Design and
Modeling of Superfractionators. Proceedings, Second International
Conference on Foundations of Computer-Aided Process Design,
Snowmass, CO, June 1983; CACHE Publications: Ann Arbor, MI,
1984; pp 709-740).

Figure 6. Distillation example: ethylene purity in distillate vs
k23. Redrawn from Macchietto et al. (Exact Determination of
Process Sensitivity to Physical Properties. Fluid Phase Equilib.
1986, 29, 59), with kind permission of Elsevier Science-NL,
Amsterdam, The Netherlands.

Figure 7. Literature data, data banks, measurements, correla-
tions, parameters. Reprinted from Zeck (Thermodynamics in
Process Development in the Chemical Industry--Importance,
Benefits, Current State and Future Development. Fluid Phase
Equilib. 1991, 70, 125-140), with kind permission of Elsevier
Science-NL, Amsterdam, The Netherlands.

Figure 8. Confidence regions (90% and 99%) of Wilson param-
eters for ethanol-heptane. Data are from Smyth and Engel
(Molecular orientation and the partial vapor pressures of binary
mixtures. II. Systems containing alcohol. J. Am. Chem. Soc. 1929,
51, 2660-2670) and from Ferguson, Freed, and Morris (The
system: ethyl alcohol-heptane at 30°. J. Phys. Chem. 1933, 37,
87-91).
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Although an estimate of the error in the reported
experimental data is required by some journals, the basis
of the estimate is often not specified. Is it meant to include
only errors in precision (random errors), or are accuracy
(systematic errors) estimates included? Are the reported
values estimated standard deviations or average absolute
deviations? Was the American National Standards Insti-
tute (1985) or another standard error analysis procedure
used? If “rouge” data were eliminated, on what basis was
this done? These are all questions that need to be ad-
dressed.

Process Simulator Uncertainty

Beyond the choice of model, the regression of model
parameters, and the evaluation of experimental data, the
process simulator can introduce uncertainty. Differences
in algorithms or tolerances can affect designs, but even
when one attempts the same problem on different process
simulators, differences arise. Sadeq et al. (1995) studied
the classic styrene + ethylbenzene separation with three
different popular process simulators. In each case, the
model chosen was the standard SRK equation. However,
as shown in Figure 9, the results for the product flow rates
and purities are quite different. The ethylbenzene flow
rate from the bottom of the second tower, for example, was
calculated to be 2.90, 8.55, and 5.63 kmol/h from the three
different simulators. Sadeq et al. attribute some, but not
all, of the differences to the pure-component database in
the three simulators.

Some organizations standardize on one process simula-
tor, but engineers who have used two or more simulators
have reported similar, distressing differences in simulation
outputs. From heat exchangers to compressors, from
reactors to distillation columns, cases have been reported
to the author where (as far as the process design engineer
knew) precisely the same simulation was being done, but
different results were being obtained. Although these
differences have sometimes been resolved (with some
difficulty) as occurring from convergence tolerance differ-
ences, from nuances in the way thermodynamic models are
used to calculate properties, and from programming errors,
they do point to an uncertainty problem that can be easily
overlooked. In fact, it is not clear how these uncertainties
can even be recognized if one uses only a single process
simulator.

Monte Carlo Approach

In an attempt to address the concerns that output
uncertainties are nonlinear, that they should be related to
the uncertainties of the inputs, and that the procedure
should lend itself to risk analysis, various authors have
applied the Monte Carlo technique to design uncertainties.
For example, Uddin and Bell (1988), Badar et al. (1993),
and others have applied Monte Carlo to the uncertainty
in heat exchanger design to uncertainties in design vari-
ables, measured process variables, and calculated physical
properties. We (Reed and Whiting, 1993; Whiting et al.,
1993) have studied the effect of thermodynamic model
parameters on process design and predicted performance
for several cases.
In a Monte Carlo simulation, process simulations are

repeated with variations in input variables (such as
thermodynamic model parameters or raw material costs).
The output variables from the set of simulations show a
distribution from which uncertainty analyses can be per-
formed. The values for the input variables are drawn from
distributions based on the uncertainty. For example, our
best estimate for the binary parameter kijmay be 0.02, but
we may find that there is a 2.5% chance that it is actually
above 0.03 and a similar chance that it is below 0.01. If
we assume a Gaussian distribution, the mean would be
0.02 and the standard deviation would be 0.005. Other
distributions may be used, and frequently a log-normal or
a triangular distribution is the choice. Joint probability
distributions for the uncertain input parameters can be
used, for example, with a co-variance matrix. Especially
with highly correlated parameters, such as those of liquid-
state activity-coefficient models, such a treatment is es-
sential. Fortunately, the final cumulative frequency dis-
tribution is reasonably insensitive to the form of the
distribution; however, it is sensitive to the mean and
standard deviation.
Our philosophy is to treat the process simulator as an

experimentalist treats laboratory equipment. Experiments
are, in general, time consuming and costly. Therefore, to
obtain the maximum useful information from the fewest
experiments, the experimentalist uses a statistical design
to choose the conditions at which to run the experiment.
Similarly, we use experimental design to choose a set of
model parameter values for which to run the simulation.
In a typical multicomponent simulation, there are many
such parameters to vary. Thus (as in the experiment), we
would not merely vary one parameter at a time. Rather,
we would look throughout the feasible region of parameter
space with a relatively small number of experiments. And,
as with the true experimental matrix, we should perform
more experiments in regions of the parameter space that
are more important vis-à-vis the final application of the
data. Thus, we sample from the probability distributions
of the parameters (corresponding to their uncertainties),
and we use a stratified sampling technique (e.g., Latin
Hypercube Sampling) to choose our “experimental” matrix
of conditions. The details are given elsewhere (Whiting et
al., 1993).
Figure 10 (from Reed and Whiting, 1993) shows the

results of such a set of simulations for the separation of
benzene and toluene. In this case, there are seven uncer-
tain input parameters, each with associated uncertainties
from standard sources. In this illustrative example, the
uncertainties distributions are assumed independent, which
can overestimate the output uncertainty. (A treatment of
this example with such correlation included is given
elsewhere [Reed, 1992].) For fixed product purities and
R/Rmin, the uncertainty in the number of theoretical stages

Figure 9. Styrene/ethylbenzene separation with three different
process simulators. Redrawn from Sadeq et al. (Anomalous Results
from Process Simulators. AIChE Annual Meeting, Miami Beach,
November 1995; paper 30d).
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required is significant. Such a figure reminds the process
engineer that there is approximately 50% chance that the
base design (i.e., the only design that is available if only
one simulation is run) is adequate. Of course, some safety
factor is always applied. Figure 10 provides a rational
alternative to traditional safety factors because it shows
the quantitative risk reduction achieved by any given
increase in the number of stages.
An alternative to substantial overdesign is to improve

the quality or quantity of experimental data and, thereby,
the quality of the model parameter values. If there are
two data sets of unequal uncertainty, choosing the better
data set could improve the quality of the parameter values.
Additional data may improve the accuracy of the model
parameters, but they more likely will improve their preci-
sion. In Figure 11, Reed and Whiting show the quantita-
tive effect of increased parameter precision on design
uncertainty. With the original parameter precision (Figure
10), 25 stages (40% overdesign) are required to attain 80%
design confidence. Yet, with the improved parameter
precision (Figure 11), only 21 stages (17% overdesign) are
required. The value of additional experimentation can thus
be quantified. It is the savings achieved by reducing the
extent of overdesign, for a given risk benchmark. There
are, of course, other factors (operating and capital costs,
process flexibility, etc.) that can be included in the simula-
tion.

Sensitivity/Regression Approach

Although, as noted previously, a simple linear, dif-
ferential sensitivity approach is not very useful, the results
of a Monte Carlo study provide data over the entire
expected range of the input variables (e.g., model param-
eters). Such data can be regressed with multilinear or
multinonlinear approaches both to rank the model param-
eters and to provide simple sensitivity data.

For example, the data generated in the set of Monte
Carlo simulation runs can be regressed to obtain standard-
ized regression coefficients (the SRCi in the regression eq
1), or partial correlation coefficients (PCCi in eq 2) can be
obtained by performing two separate regressions (one with
all input variables and one with the subject input variable
ignored).

where y is an output variable, the xi are input variables, σ
is the standard deviation, m is the number of input
variables, and n is the number of Monte Carlo simulation
runs made.
Both of these coefficients range from -1 to +1, and larger

magnitudes indicate greater sensitivity of the output
variable (y) to changes (on a normalized basis) in the input
variable (x).
While there are other alternatives (nonlinear regression

coefficients, simple correlation coefficients, rank regression
coefficients, etc.), all of these techniques provide more
useful information because the data from the Monte Carlo
simulation runs are from the actual probability distribu-
tions of the input (model) parameters. The data cover the
entire model-parameter range of interest, and they are
more concentrated in the more likely ranges. The sensi-
tivities calculated, therefore, are standardized and can be
compared directly, even though the standard deviations of
the model parameters can be quite varied.
For example, Table 1 shows sensitivity coefficients for

the benzene/toluene problem mentioned earlier. These
results show that the precision of the acentric factor has
the greatest impact on the uncertainty in the number of
stages. Although the precise meaning of the coefficients
in Table 1 is beyond the scope of this article, these values
do show that, if the true value of the acentric factor is one
standard deviation above the mean value reported, the
number of stages required will be affected more greatly
than it would if any of the other model input parameters
were varied by one standard deviation. Such deviations
are all equally likely; thus, the coefficients provide a tool
both for risk assessment of and for rank ordering the
impact of experimental errors on the simulation result.
Such a ranking of input variable sensitivities was used to
decide which input variable to investigate for the improved-
precision study shown in Figure 11. Identification of the

Figure 10. Uncertainty in theoretical stages.

Figure 11. Uncertainty in theoretical stages with reduced model-
parameter uncertainty.

Table 1. Sensitivity Coefficients (Benzene/Toluene
Example)

no. of stages reflux ratio

SRC PCC SRC PCC

Tc (benzene) 0.094 0.160 0.059 0.102
Pc (benzene) -0.067 -0.119 -0.013 -0.023
ω (benzene) 0.529 0.685 0.493 0.664
Tc (toluene) -0.141 -0.245 -0.119 -0.211
Pc (toluene) 0.001 0.002 -0.013 -0.023
ω (toluene) -0.614 -0.732 -0.665 -0.762
kij 0.005 0.009 0.005 0.009

y - yj

σy
) ∑

i)1

m

SRCi

xi - xji

σxi
(1)

PCCi
2 )

∑
j)1

n

(yj - yj
regress model without xi)2 - ∑

j)1

n

(yj - yj
full regress model)2

∑
j)1

n

(yj - yj
regress model without xi)2

(2)
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most important variable for further experimental study is
made via the sensitivity analysis. The value (in reduced
risk or reduced overdesign) of the additional experimental
work then is estimated by comparing the Monte Carlo
simulations for two different standard deviations of the
input variable.

Optimization-Analog Approach

On current chemical process simulators, various (numer-
ous) options are given for calculation of physical properties.
The number of possible combinations of models for K-
factors, enthalpies, densities, etc., is huge. In this environ-
ment, the process engineer chooses a set of models, often
with the guidance of the physical-properties expert. Ad-
ditional guidance is sometimes provided in the documenta-
tion for the process simulator. Even in a simple problem
such as that shown in Figure 12 (Klein, 1993), however,
unexpected differences occur for different similar property-
model choices. In this process, a hot gas stream is cooled
by the addition of a water spray. The outlet is all vapor,
and no reactions occur. Yet Figure 13 shows a significant
variation in calculated outlet temperature. The results
shown are for the standard equation-of-state options for
two different process simulators.
The difference between running the simulation with only

one of these options and running the simulation with
several options is dramatic. The process engineer, having
been offered only one option, would have a great deal of
confidence in the result. However, if the process engineer
investigated several different (yet similar) property options,
the inherent uncertainty in the calculated outlet temper-
ature would be clear. The difference between the results
from two models is not itself an estimate of the uncertainty.
However, if both models are believed to be of equal quality
for calculating the property of interest, the difference
between them is an estimate of the lower bound of the
uncertainty of the models.

In this simple example, the most important property is
the enthalpy of vaporization of water, and the models used
predict widely varying values of this property. This
property is known experimentally to great accuracy, but
it is very poorly predicted by equation of state models. We
have used this example at several large chemical compa-
nies, and the physical properties experts were surprised
by the variation in predicted outlet temperature. However,
through this approach of trying several model options, the
problem was revealed, which guided the proper analysis
of the cause of the model uncertainty. Another possible
source of uncertainty could be the heat-capacity correla-
tions used in the calculation. For each calculation, the
same standard correlations were used; thus, the effect of
this uncertainty is not revealed in the analysis.
One approach to this problem is to consider the choice

of physical-property model to be analogous to any optimi-
zation problem. There are no “exact” models, but some
models are better than others. As in the traditional search
techniques in optimization or other numerical methods, we
begin at an initial point and try to improve the answer by
increasing the order of the method. In other words, we
use better techniques that involve fewer assumptions or
less truncation error. As one moves closer to the optimum,
a traditional way to estimate the error in the answer is to
compare the best answer to the second-best answer. If the
procedure is rapidly converging, this estimate is reason-
able.
In the choice of property model, one can also consider

several models of increasing expected accuracy. The dif-
ference between the results of a process simulation with
the expected “best” model and the results obtained with
the expected “second-best” model can be used to obtain a
crude estimate of the uncertainty of the result. On the
other hand, if there are several equally good models, one
can run the process simulation with each (as in Figure 13)
to estimate the uncertainty. This, too, is a technique that
we have used in optimization studies.

Conclusions

The accuracy and precision of physical property data and
models have significant impacts on the results of process
calculations. Without the quantification of these impacts,
the process design engineer cannot rationally assess the
risk of process failure, the appropriate extent of overdesign
or, indeed, the value of high-quality physical property data
and models. Monte Carlo simulations and probabilistic
sensitivity analyses can provide uncertainty information
for specific models, when the uncertainty of the underlying
experimental data are available. Comparisons of the
results of process simulations using different models (and
even different process simulators) can provide further
uncertainty information to the process design engineer. In
each case, the connection between errors in experimental
data, property models, and process calculations must be
recognized.
To obtain the uncertainty information needed will re-

quire a coordination of efforts. Clear, rational, and con-
sistent statements of estimated uncertainties are needed
in experimental papers. Critical evaluations of experimen-
tal data must include estimated uncertainties. When
model parameters are regressed from data, the uncertain-
ties in the parameter values (including correlations be-
tween parameters) must be given. Estimates of uncer-
tainties in values calculated from the model should also
be presented. Finally, process simulators should include
estimates of the uncertainty of their results, based on the
uncertainties in the models used for physical properties.

Figure 12. Flow diagram for gas cooling example.

Figure 13. Outlet temperature sensitivity to model choice for gas
cooling example. The abscissa variable is an arbitrary numbering
for thermodynamic options from two different process simulators.
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